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COMMENT 

How many vector constants of motion exist for a particle 
moving in a central potential? 

A Holasf and N H March$ 
t Institute of Physical Chemistry, Polish Academy of Sciences, Kasprmka 44/52, 
01-224 Warsaw, Poland 
t Theoretical Chemistry Department University of Oxford, 5 Souh Paks Road, 
Oxford OX1 3uB, IJK 

Received 26 August 1993, in final form 4 February 1994 

Abstract Yan (1991 1. Phys. A; Math Gen 24 4731) has drawn the conclusion that, for central 
fields, there exists anotl!er vector constant of motion 3, in addition to the angular momentum L. 
It is proved here that J is in fact only equal to zero ‘almost everywhere’: .7 is not, therefow 
rigorously a constant of motion. 

As is well known, the classical Kepler problem of motion in a central, bare Coulomb 
potential, possesses two vector constants (integrals) of motion: the angular momentum L 
and the LaplaceRungeLenz vector A. Can this properly be generalized to the case of 
other central potentials? This question has been addressed again in the recent study of Yan 
[I], despite a substantial number of investigations in the last few decades devoted to this 
problem (see, e.g., [Z] and references in both [l] and [Z]). Yan concludes that, besides the 
angular momentum vector L, there is always another vector constant of motion, .3 say, 
explicitly constructed in his work, and that ‘the existence of this general solution does not 
depend on any condition, such as the orbit must be closed or that there is some hidden 
higher symmetry’. 

The purpose of the present comment is to check whether Yan’s vector Z(T, +) is really 
a constant of motion. To do this (see also [Z]), the time evolution of .3 will be studied, 
by its dependence on ~ ( t )  and + ( t )  which are, in tum, both obtained by integration of the 
equation of motion: .7(t) = Z(T(~ ) ,  +(t)) .  

We need first to determine the limits of integration left undefined by Yan in his expression 
for the vector 3. First, let us introduce the potential energy instead of an integral of force 
(see (2.5), (2.6) and (4.1) of Ill): 

V ( r )  = V(x’ /2)  = -1 [ f (s) ds (1) 

where the variable x ,  as defined by Yan, 

(2) 2 X = T . T = T  

is employed, Although the choice of a particular 10 shifts the scale of the particle energy 
E = H, this does not affect the results, because the two quantities H and V are used only in 
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the combination H - V. Next, in the expression for the angular coordinate 6 (equation (4.1) 
of [I]), we choose r,’ for the lower integration l i t  there: 

A Holm and N H March 

Here rp is the distance from the potential centre to a perihelion of the orbit (similarly, the 
notation r, will be adopted for the aphelion case). The above choice fixes the position of 
the particle on the orbit at the initial time to be at the perihelion. 

To analyse in detail the expression for 3 obtained by Yan, we first note that the time 
derivative of x in (2) is given by 

i = 21’: T = ~211‘. T I  = 2ir = u2li.lr (4) 

where we have introduced the following function of the canonical variables 

U = U ( T ,  i) = sgn(1‘. T )  = sgn(i) .  (5) 

This quantity equals +1 during each time interval when the particle moves from a perihelion 
to the nearest aphelion (because r ( t )  increases) and -1 when it moves from an aphelion 
to the nearest perihelion (because r(r) decreases). It appears that Yan did not take account 
of these changes in the sign of x ,  thereby using expression (4) but with U replaced by 
unity. Therefore, the right-hand side of, for instance, (2.11)-(2.13), (2.19) and (4.3) must 
be multiplied by U.  But (2.14)-(2.18) remain correct, because uz = 1. 

Now we claim that one of the correct solutions for the vector 3, satisfying the 
appropriate differential equations derived by Yan [I], coincides with the perihelion vector 
(Fadkin’s vector) ,$ discussed in [2]: 

3(r ,  1‘) = i ( T ,  i) (6) 

where 6 = a/lal denotes a unit vector. Yan’s vector is defined in terms of the scalar 
function A as . 

3 = ~ 1 ’  - AT. (7) 

Below we set out some relations leading to the proof of (6). Comparing the definition of 
the function i l  (r)  in equation (A4) of [2] in which mass m = 1, used by Yan, is substituted, 
with the definition F ( x )  in equation (2.6) of [I], in which (1) and (2) are substituted, we 
find 

F’/’(r’) = riI(r) (8) 

which then leads to the further relation 

e(rz)  = (9) 

when the definition of e(x) in (3) is compared with equation (A3) of 121. For the function 
A we take solution (4.2) of [l] of the differential equation (2.15) of [l], as found by Yan, 
transformed next as follows: 

A -+ -uA. (10) 
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(It should be noted that Yan actually applied such a transformed solution when he 
exemplified his results for the case of the Kepler, bare Coulomb, problem, writing them 
in the form (3.6) of 121.) The solution transformed according to (10) is also a valid 
solution of the differential equation (2.15) of [I] because this equation is homogeneous 
with respect to A, while U behaves as a constant along the whole particle trajectory except 
at discrete points-perihelions and aphelions, excluded from consideration for the reasons 
to be discussed below. In our notation, such a solution A is 

(11) 
3 .  A = -u-rsin@I 
L 

so that 

where (4) has been used in the second step. Expressing T and 1‘ according to equations (2.9) 
and (2.11) of [2] as 

(13) 
L ,  r = ~ r e  T=ie+-e 
r 

and substituting (11)-(13) into (7), we obtain for 3 the same expression as in 
equations (2.14). (2.18) and (2.21) of [Z] for 6, thereby proving equation (6). 

Therefore, we merely recall the properties of i(r(r), i ( t ) )  established in [2]; that 6 
is constant during each time interval in which the particle moves along its orbit from an 
aphelion, via the perihelion to the next aphelion, 6 being directed from the potential centre 
towards that perihelion, and then, at the moment the particle passes the aphelion, 6 abruptly 
changes its direction towards the next perihelion. So k(t)  and thus $(t)  are almost always 
constant in time, except at the moments when the particle passes aphelions. Such a property 
was actually imposed on .7 by Yan: 

We must note, however, that the function F 1 / z ( x ) ,  being non-analytic at turning points 
x = r,’ and r,”. is not differentiable at these points. Therefore the differential equation (2.15) 
of [l], deduced from (14), which in turn determines the scalar function A of the vector 3, 
is defined for all points of the particle trajectory except the turning points of its orbit. 
Consequently, the demand (14) cannot concern these points. 

By way of summary, it has to be stressed that the perihelion vector for a general central 
force problem is a multivalued function of the coordinates [2]. The advance of this vector 
can be treated either as a discontinuity in its time behaviour or as a change of a branch of the 
multivalued function. More specifically, the fulfilment of equation (14) almost everywhere 
does not permit the deduction that Yan’s vector .7 is a rigorous constant of motion for an 
arbitrary central potential and an arbitrary orbit (i.e. arbitrary E and L). Our conclusion 
stated in [Z] that i (and therefore 3) can be a constant of motion only if the necessary 
condition given in equation (3.1) of [2] is fulfilled therefore needs reiterating. Consequences 
of this condition are discussed in detail in [2]. 

Constructive comments made by the referee have helped to improve the presentation of this 
work. 

.7 = 0. (14) 
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